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Ab&act Tangent space null rotations are used to give a straightforward classification of 
the Ricci tensor in general relativity theory. 

Severaidiscussions of the algebraic classification of the Ricci tensor in general relativity 
bavebeen given (for example Churchill 1932, Plebanski 1964, Plebanski and Stachel 
1968,Barnes 1974). In this note, a straightforward approach to such a classification is 
presented which makes use of the null rotation subgroup of the proper orthochronous 
lorentzgroup. Although the Ricci tensor is singled out, the results given apply to any 
s)"etric second-order tensor on a four-dimensional Lorentzian manifold. 

koughout, Mwill denote a space-time (a four-dimensional Lorentzian manifold) 
andifp~M, T,(IM) will denote the tangent space to M at p-a four-dimensional real 
lorentdm inner product space. Suppose that a basis for Tp(M) is chosen so that the 
components of a certain null vector 1 E T,(M) are Z'. Then I can be supplemented by 

of another null vector and two spacelike vectors in Tp(M) whose components in 
&basis are m', a', b' respectively? and such that these four vectors form a null tetrad 
sahsfylng I'm, = a'a, = b'b, = 1, with all other inner products zero. If the components 
Of the metric tensor in this basis are g,, one has the completeness relation 
L%m,,+a,a, + b'b,. Of the proper orthochronous Lorentz group of linear 
wormations of T,(M) into itself, the subgroup of null rotations about I will be 
md%lY useful. The members of this subgroup preserve the direction of 1 and are 
mnvenien%' represented in terms of components in the above basis by (Sachs 1961) 

1' + = AI' 

pber e4 35 6 are real parameters, arbitrary except for the restrictions ct2+p2 = 1 aA,O. 
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me covariant.Kcci tensor with components &j can be represenkd in terms@& 
.&rs of €he nd..tetrad, with the aid of the completeness relation, by the formnh 

Rij = 2R11~imj,+R21ilj -k R3mimj+2R41(iaj)+2R51(ibj~+2R6m~iaj, 

(2) 
The mixed Ricci tensor with components R; can be represented as a linear transforma. 
tion R : Tp (M> + Tp (M) with matrix R ';.. The following general res& about R are 
available (cf Churchill 1932). 

(i) There always exists a two-dimensional subspace of Tp(W which is an h a  
2-space of R. 

(ii) If V is an invariant 2-space of R then so is the 2-space orthogonal to v. 
(iii) R has a spacelike invariant 2-space (equivalently a timelike invariant 2- 

(iv) R has a null invariant 2-spaceeR has a null eigenvector. 
To prove these results it is pointed out that a two-dimensional subspace of T,(M)& 

called timelike, null or spacelike according as it contains exactly two, one or 110 nd 
vectors. The families of timelike, null and spacelike 2-spaces partition the familyofan 
2-spaces of T,(M). Also the 2-space orthogonal to a spacelike (respectivelytimelike, 
null) 2-space of Tp(M) is timelike (respectively spacelike, null). To prove (i), notethatif 
R{ is similar t o  a Jordan matrix, then the first two members (in the conventional 
numbering) of a Jordan basis for Rj span an invariant 2-space of R. If Riis not S i  
to a Jordan matrix, the real and imaginary parts of a complex eigenvector of R span an 
invariant 2-space of R. The proof of (ii), (iii) and (iv) follows from the following 
remarks. If R has a spacelike invariant 2-space spanned by orthogonal unit spacelike 
vectors a' and bit construct a null tetrad with components l', mi, ai, b .  In t e r q s o f ~  
null tetrad, R, takes the form (2) with R4 = RS = R6 = R 7  = 0 whence 1' and m'spanm 
orthogonal timelike invariant 2-space. The proof when R has a timelike hVariant 
2-space is similar. In the case when R has a spacelike invariant 2-space spannedby unit 
spacelike vectors ui  and b', one can start from the above null tetrad and perfom a n d  
rotation (l),with A = 1, y = S = 0 and a, p chosen such that in the new null tetrad 

& * = 0. It then fo]lows that hi  and 6' are the a". 
nents of distinct spacelike eigenvectors of R. If R has a null invariant 2-SPa%letI'a' 
span this 2-space, where lili = l'ai = 0 and a i  is a unit spacelike vector. One yw 
constructs a null tetrad 1' mi a'b' and in this tetrad Rij takes the form (2i wtb 
R 3 = R 6 =  R7=R8=0 .  Thus I'isaneigenvectorof'R andl'and b'spanaridlkvariant 
2-space orthogonal to the original one. All the results above now follow eady* 'Ibe 
results (i) and (ii) show that at least two invariant 2-spaces of R always emt- 

The various canonical forms for the Ricci tensor, based on equation (2), can 'Ow be 
derived. Two cases are considered. 

+ 2R7m4j, + 2R8qibj) + Rgaiuj + R ''bibi. 

space)* R has two distinct spacelike eigenvectors. 

h' 6' hi, R4 = A = & = &' 
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Ria 
ose (a)  one can perform a null rotation (1) with a = A = 1, " Y  /3 = 0 and with y 

,a\ d&n that in the new null tetrad, R3 = R 4  = fi5 = g6= R7 = R 8  = 0. So the 
tensor takes the form 

R~~ = 2p1 1(pnj) + Aliij +p2aiaj + p3 bibj (3) 

nbere &e primes have been omitted from the tetrad vectors. If A # 0, the vectors li, a' 
dbigeeigenvectors of the Ricci tensor with eigenvalues pl ,  p2 and p3 respectively. In 
bwitiseasilyshown.that Riis similar toa JordanmatrixwithSegrC type{(2)(1)(1)} 
oa~(2)o(l, I)}. If A = 0, l', m', U' and b' are all eigenvectors of the Ricci tensor with 

pl, pl,  p2 and p3 respectively. In this case R/ is similar to a diagonal matrix 
d&segrk type {(1,1)(1)(1)} or {(1,1)(1,1)). The cases ( b )  and ( c )  are similar. In 
Ease (b),  starting from the initial null tetrad in which R3 = R 6  = R' = R8 = 0, if also 
R4=0 tben there exist: a n$l rotjition,,(l) with A = a = 1, P= y = 0, yielding a new 
mdwith g3 = k4 = R' = R 6  = R7 = R8 = 0 and equation (3) together with the SegrC 
tgpes{(2,1)(1)} or ((1, 1, 1)(1)} applies. If in the initial null tetrad, R4# 0, then there 
e& a null rotagon with A = (Y = 1, p = 0 yielding a null tetrad in which R 2  = fi3 = 
P= li6 = R' = R8 = 0 and (on omitting primes again) a canonical form 

Rij = 2p11~imi~+2al~,aj~+plaiuj+p2bibi. (4) 

SinceR4f0, we have U # 0 and so 1' and b' are eigenvectors of the Ricci tensor with 
endues p1 and p2 respectively. The matrix Ri is similar to a Jordan matrix with 
Wtype{(3)(1)}. Case (c) is similar. In case (d), if R 4 = R s =  0, equation (3) again 
d b ~ t h ~ g k  types ((2,  I, 1)) or ((1, I, I, I}. If (R4)2+(R5)2#~ ,  a null rotation 
* A = l  can be used to obtain a null tetrad in which the canonical form (4) holds with 
Pi'Pz.h this case one again has U # 0 and Ri is similar to a Jordan matrix with SegrC 
6 R 3 7  1)). 

B. 791e Ricci tensor has no null eigenvectors 

ghRkci tensor has no null eigenvectors, it follows from results (9, (ii), (ii) and (iv) 
h w h a t  it has two distinct spacelike eigenvectors with, say, components a' and b'. On 
m c t h g  a null tetrad with components l', mi, U', b', the Ricci tensor in this tetrad 
hkes the form (2) with R4 = Rs = R6 = R7 = R8 = 0. The condition that the Ricci 
brh no null eigenvectors implies that R 2  # 0, R 3  # 0. The ambiguity in this null 
h d ,  represented by a null rotation (1) with (Y = 1, y = S = P = 0 and A arbitrary, can 
'~t0ensurethatjR2I=IR31. Thetwopossibilities R 2 =  R3and RZ=-R3geld 
&respective canonical forms: 

Rij = 2pI l(imj) +p2( l i l j  + mimi) +p3aiaj +p4bibj 

Rij =2p51(,mi)+p6(iilj- m,mj)+p7aiai +psbibj (6)  

(5 )  

*etheandition * .  p 3  # p1 -p2 it p4 holds in equation (5) .  Equation (5)  shows that R /  
'*tea diagonal matrix with Segrt,type {(1)(1)( 1)(1)} or some degeneracy of this 
?' nereis one he l ike  eigenvector I' -mi  and three spacelike eigenvectors 1' + mi, * 

and their eigenvalues are respectively p1 - p2, p1+ p2, p3 and p4. the ~ c c i  
*falres&eform (6),  then the real eigenvectorsare a' and b' with (real) eige-nvalues 

!esPe*ely. In this case, R: is not similar to a Jordan matrix but rather has 
*lex eigenvectors I' f im' with corresponding eigenvalues ps f ip6. 
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Some concluding remarks can now be given. Firstly, it follows hdiakbfrom 
equation (2) that if a Ricci tensor has two distinct null eigendirectiom, then 
corresponding eigenvalues are equal and R! is similar to a diagonal matrix. 
equality of the eigenvalues also follows from the fact that two eigenvedoR~& 
different eigenvalues are orthogonal.) The results given above also show that a 
tensor has a unique null eigendirectionej?: is similar to a Jordan matrix wj& a 
non-simple elementary divisor, and that RI is diagonableethe tensor has a 
h e l i k e  eigenvector. All Ricci tensors have at least two distinct real eigenv". 
Secondly, it is easily shown that the null tetrad yielding the canonical structure (4) is 
uniquely determined when the eigenvalues P I  and PZ are distinct and when the dueof  
CT is to be preserved. However, in equation (3) with A Z 0, even when the eigendm 
pl, p 2  and p3 are distinct and the value of h to be preserved, the null tetrad is notunisue 
sincealternative tetrads areobtainable from (1)withA = 1, r=S=Oandeitherfi=o, 

= -1 or a = 0, p = *l. Similar ambiguities arise in equations (5) and (6) when & 
eigenvalues are distinct. Further ambiguities of tetrads are introduced in the event d 
certain eigenvalues being equal. Alsot, in (3) with A # 0, for a given tetrad and tripleaf 

Table 1. 
- -~ 

Case A. The Ricci tensor has a null eigenvector 

Present notation Segre' type Plebanski type 

Subcase(a) 

Case B. The Ricci tensor has no null eigenvectors 
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Maus pl, p2 and p3 corresponding to the eigenvectors l’, a’ and b’, two different 
Ricritenso’s s e  determined (distinguished by the sign of A )  in the following sense; any 

a,.j temor may be reduced by a transformation (1) to the form (3) in which the 
mgientOf li( is -t-l(-l)eJh > 0 (A 0) in the original tetrad. In contrast, any Ricci 

satisfying (4) (U # 0) may be reduced to the form (4) with U = 1 by a transfoma- 
tion of fie form (1). Thirdly, a classification of the Ricci tensor can be achieved directly 
byconsidering the possible Jordan and rational forms for a 4 x 4 matrix. Since the red 

are not algebraically closed, the rational form is introduced to deal with those 
--when complex eigenvalues Occur. Since this approach (or variations of it) 
oog&s the matrices Ri’ and gi’, the signature of the metric is disregarded and the 

signature must be imposed as a constraint after the algebraic results have 
matabtished. As a result, certain canonical types are ruled out as being inconsistent 
&theLorentzian signature of gij and the symmetry of Rij (cf Plebanski 1964, Barnes 
19’14). The present approach incorporates the Lorentzian signature from the beginning 
d no elimination procedure is necessary. Fourthly, for any Ricci tensor which has 
non-realeigenvaluesorhas SegrC type{(3)(1))or{(3, l)}, thecanonical forms (4) and(6) 
an be used to show the existence of timelike vectors with components U’, v i ,  say, 
satidying Riju and so such Ricci tensors would not be considered 
physically significant in general relativity because of the well known ‘energy 
mdition’t. Finally, table 1 gives a summary of the present classification and the 
asociated Segri types and relates it to the well known Plebanski classification of the 
Riccitensor (Plebanski 1964). 

< 0 < Rip 
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